Optimization with missing data

نویسنده

  • ANDY J. KEANE
چکیده

Engineering optimization relies routinely on deterministic computer based design evaluations, typically comprising geometry creation, mesh generation and numerical simulation. Simple optimization routines tend to stall and require user intervention if a failure occurs at any of these stages. This motivated us to develop an optimization strategy based on surrogate modelling, which penalizes the likely failure regions of the design space without prior knowledge of their locations. A Gaussian process based design improvement expectation measure guides the search towards the feasible global optimum.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DEA with Missing Data: An Interval Data Assignment Approach

In the classical data envelopment analysis (DEA) models, inputs and outputs are assumed as known variables, and these models cannot deal with unknown amounts of variables directly. In recent years, there are few researches on handling missing data. This paper suggests a new interval based approach to apply missing data, which is the modified version of Kousmanen (2009) approach. First, the prop...

متن کامل

Missing data imputation in multivariable time series data

Multivariate time series data are found in a variety of fields such as bioinformatics, biology, genetics, astronomy, geography and finance. Many time series datasets contain missing data. Multivariate time series missing data imputation is a challenging topic and needs to be carefully considered before learning or predicting time series. Frequent researches have been done on the use of diffe...

متن کامل

Flow Shop Scheduling Problem with Missing Operations: Genetic Algorithm and Tabu Search

Flow shop scheduling problem with missing operations is studied in this paper. Missing operations assumption refers to the fact that at least one job does not visit one machine in the production process. A mixed-binary integer programming model has been presented for this problem to minimize the makespan. The genetic algorithm (GA) and tabu search (TS) are used to deal with the optimization...

متن کامل

A New Algorithm for Optimization of Fuzzy Decision Tree in Data Mining

Decision-tree algorithms provide one of the most popular methodologies for symbolic knowledge acquisition. The resulting knowledge, a symbolic decision tree along with a simple inference mechanism, has been praised for comprehensibility. The most comprehensible decision trees have been designed for perfect symbolic data. Classical crisp decision trees (DT) are widely applied to classification t...

متن کامل

Preferred Robust Response Surface Design with Missing Observations Based on Integrated TOPSIS-AHP Method

- Missing observations occur in experimental designs as a result of insufficient sampling, machine breakdown, high cost, and errors in the measurements. In nanomanufacturing, missing observations often appear in designs because the combination of factors or molecular structures selected by a designer cannot be experimented successfully. In the current paper, Box-Behnken and face-centered compos...

متن کامل

Spectral estimation under nature missing data

This paper considers the problem of estimating the autoregressive moving average (ARMA) power spectral density when measurements are corrupted by noises and with missing data. The missing data model is based on a probabilistic structure with unknown. In this situation, the spectral estimation becomes a highly nonlinear optimization problem with many local minima. In this paper, we use the globa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006